Cardenolide aglycones inhibit tumor necrosis factor α-induced expression of intercellular adhesion molecule-1 at the translation step by blocking Na⁺/K⁺-ATPase.

نویسندگان

  • Yuji Okina
  • Fumihiko Takeuchi
  • Tomonobu Yokomichi
  • Yohei Takada
  • Takao Kataoka
چکیده

Cardiac glycosides, which are inhibitors of Na(+)/K(+)-ATPase, are classified into cardenolides and bufadienolides. We have recently shown that two cardenolide glycosides, ouabain and odoroside A, inhibit Na(+)/K(+)-ATPase, thereby preventing nuclear factor κB-inducible protein expression by blocking Na(+)-dependent amino acid transport. In this study, we investigated the mechanism of action of cardenolide aglycones in tumor necrosis factor α (TNF-α)-induced gene expression. Ouabagenin, digitoxigenin, and digoxigenin were found to inhibit the TNF-α-induced cell-surface expression of intercellular adhesion molecule-1 (ICAM-1) in human lung carcinoma A549 cells. Those cardenolide aglycones did not inhibit the TNF-α-induced expression of ICAM-1 mRNA, but strongly inhibited the TNF-α-induced expression of ICAM-1 as translation product. The inhibition of the TNF-α-induced ICAM-1 expression by ouabagenin, digitoxigenin, and digoxigenin was significantly reversed by the ectopic expression of ouabain-resistant rat Na(+)/K(+)-ATPase α1 isoform. Moreover, knockdown of Na(+)/K(+)-ATPase α1 isoform augmented the inhibition of the TNF-α-induced ICAM-1 expression by ouabagenin or ouabain. These results clearly indicate that cardenolide aglycones inhibit the TNF-α-induced ICAM-1 expression at the translation step by blocking Na(+)/K(+)-ATPase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α...

متن کامل

2,3-Dimethoxy-2′-hydroxychalcone ameliorates TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness via NF-kappaB inhibition and HO-1 induction in HaCaT cells

Up-regulation of adhesion molecules plays an important role in the infiltration of leukocytes into the skin during the development of various inflammatory skin diseases, such as atopic dermatitis. In this study, we investigated the modulatory effects of 2,3-dimethoxy-2'-hydroxychalcone (DMHC) on tumor necrosis factor (TNF)-α-induced intercellular adhesion molecule-1 (ICAM-1) expression and mono...

متن کامل

Raf Kinase Inhibitor Protein (RKIP) Inhibits Tumor Necrosis Factor-α (TNF-α) Induced Adhesion Molecules Expression in Vascular Smooth Muscle Bells by Suppressing (Nuclear Transcription Factor-κB (NF-kappaB) Pathway

BACKGROUND Raf kinase inhibitor protein (RKIP) regulates growth and differentiation and plays a role in key signal transduction cascades in mammalian cells. Nevertheless, the underlying mechanism for which RKIP regulates cell-cell adhesion remains unknown. Our study investigated the function of the RKIP overexpression on adhesion molecules expression induced by tumor necrosis factor (TNF)-α in ...

متن کامل

Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes

Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-α, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-α. When ...

متن کامل

Quinacrine Inhibits ICAM-1 Transcription by Blocking DNA Binding of the NF-κB Subunit p65 and Sensitizes Human Lung Adenocarcinoma A549 Cells to TNF-α and the Fas Ligand

Quinacrine has been used for therapeutic drugs in some clinical settings. In the present study, we demonstrated that quinacrine decreased the expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor (TNF)-α and interleukin-1 (IL-1) α in human lung adenocarcinoma A549 cells. Quinacrine inhibited ICAM-1 mRNA expression and nuclear factor κB (NF-κB)-responsive luci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological & pharmaceutical bulletin

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 2015